
Jádro mikrokontroléru
a jeho typické vlastnosti

na příkladu současného jádra ARM Cortex M0+

Mikroprocesorové a vestavěné systémy (IMP)
Richard Růžička

Fakulta informačních technologií VUT v Brně

What is ARM Architecture
• ARM architecture is a family of RISC-based processor architectures

• Well-known for its power efficiency;
• Hence widely used in mobile devices, such as smartphones and tablets
• Designed and licensed to a wide eco-system by ARM

• ARM Holdings
• The company designs ARM-based processors;
• Does not manufacture, but licenses designs to semiconductor partners who add their own Intellectual Property (IP) on

top of ARM’s IP, fabricate and sell to customers;
• Also offer other IP apart from processors, such as physical IPs, interconnect IPs, graphics cores, and development tools.

ARM Processors vs. ARM Architectures
• ARM architecture

• Describes the details of instruction set, programmer’s model, exception model, and memory map
• Documented in the Architecture Reference Manual

• ARM processor
• Developed using one of the ARM architectures
• More implementation details, such as timing information
• Documented in processor’s Technical Reference Manual

ARMv4/v4T Architecture ARMv5/ v4E Architecture ARMv6 Architecture ARMv7
Architecture

ARM v6-M
e.g. Cortex-M0, M1

e.g. ARM7TDMI e.g. ARM9926EJ-S e.g. ARM1136

ARMv8 Architecture
ARMv7-A

e.g. Cortex-A9

ARMv7-R
e.g. Cortex-R4

ARMv7-M
e.g. Cortex-M3

ARMv8-A
e.g. Cortex-A53

Cortex-A57

ARMv8-R

As of Dec 2013

ARM Processor Families
• Cortex-A series (Application)

• High performance processors capable of full Operating System (OS) support;
• Applications include smartphones, digital TV, smart books, home gateways etc.

• Cortex-R series (Real-time)
• High performance for real-time applications;
• High reliability
• Applications include automotive braking system, powertrains etc.

• Cortex-M series (Microcontroller)
• Cost-sensitive solutions for deterministic microcontroller applications;
• Applications include microcontrollers, mixed signal devices, smart sensors,

automotive body electronics and airbags;

• SecurCore series
• High security applications.

• Previous classic processors
• Include ARM7, ARM9, ARM11 families

Cortex-A

Cortex-A57

Cortex-A53

Cortex-A15

Cortex-A9

Cortex-A8

Cortex-A7

Cortex-A5

Cortex-R7

Cortex-R5

Cortex-R4

Cortex-M4

Cortex-M3

Cortex-M1

Cortex-M0+

Cortex-M0

SC000

SC100

SC300

ARM11

ARM9

ARM7

Cortex-R

Cortex-M

SecurCore

Classic

As of Dec 2013

Design an ARM-based SoC
• Select a set of IP cores from ARM and/or other third-party IP vendors

• Integrate IP cores into a single chip design

• Give design to semiconductor foundries for chip fabrication

ARM-based
SoC

ROM ARM
processor

RAM

System bus

Peripherals

External Interface

SoC

SoC Design Chip ManufactureLicensable IPs

IP libraries

Cortex-A9 Cortex-R5 Cortex-M0+

ARM7 ARM9 ARM11

AXI bus AHB bus APB bus

GPIO I/O blocks Timer

DRAM ctrl FLASH ctrl SRAM ctrl

ARM Cortex-M Series
• Cortex-M series: Cortex-M0, M0+, M1, M3, M4.

• Energy-efficiency
• Lower energy cost, longer battery life

• Smaller code
• Lower silicon costs

• Ease of use
• Faster software development and reuse

• Embedded applications
• Smart metering, human interface devices, automotive and industrial control systems, white goods, consumer products

and medical instrumentation

ARM Cortex-M Series Family

Processor ARM
Architecture

Core
Architecture Thumb® Thumb®-2 Hardware

Multiply
Hardware

Divide
Saturated

Math
DSP

Extensions
Floating

Point

Cortex-M0 ARMv6-M Von
Neumann Most Subset 1 or 32

cycle No No No No

Cortex-M0+ ARMv6-M Von
Neumann Most Subset 1 or 32

cycle No No No No

Cortex-M1 ARMv6-M Von
Neumann Most Subset 3 or 33

cycle No No No No

Cortex-M3 ARMv7-M Harvard Entire Entire 1 cycle Yes Yes No No

Cortex-M4 ARMv7E-M Harvard Entire Entire 1 cycle Yes Yes Yes Optional

ARM Cortex-M0+ Processor
Overview

See what are important features
of a modern core

for embedded applications!

Cortex-M0+ Processor Overview
• Cortex-M0+ Processor

• Entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications
• An optimized superset of the Cortex-M0

• High Performance Efficiency
• 11.21 µW/MHz dynamic power requirement

• Low Power Consumption
• Longer battery life – especially critical in mobile products

• Enhanced Determinism
• The critical tasks and interrupt routines can be served quickly in a known number of cycles

• Lower Cost
• Reduced 32-bit-based system cost, close to those legacy 8-bit and 16-bit devices (e.g. can be

priced at less than $1)

Energy efficiency and
performance are most
important features of

modern MCUs!

… but price is of the
essence!

Cortex-M0+ Processor Features
• 32-bit Reduced Instruction Set Computing (RISC) processor
• Von Neumann architecture
• Instruction set

• Based on the 16-bit Thumb® instruction set and includes Thumb®-2 technology
• High code density with 32-bit performance

• 2-stage pipeline
• Performance efficiency

• 0.95-1.36 DMIPS/MHz (Dhrystone Million Instructions Per Second / MHz)

• Supported Interrupts
• Non-maskable Interrupt (NMI) + 1 to 32 physical interrupts
• 4 interrupt priority levels

32% smaller code than ARM but
98% performance of ARM

Cortex-M0+ Processor Features
• Supports Sleep Modes

• Integrated WFI and WFE Instructions and Sleep On Exit capability
• Optional Retention Mode with ARM Power Management Kit
• Sleep & Deep Sleep Signals

• Enhanced Instructions
• Single-Cycle (32x32) Multiply

• Debug
• JTAG or 2-pin Serial-Wire Debug (SWD) Ports
• Up to 4 Breakpoints and up to 2 Watchpoints

• Memory Protection Unit (MPU)
• Optional 8 region MPU with sub regions and background region

• Trace
• Optional Micro Trace Buffer

How to see into the
encapsulated chip? You need
very good debugging support
inside! Modern MCUs have it.

Cortex-M0+ Processor Features

ARM Cortex-M0+ Implementation Data

Process 180ULL
(7-track, typical 1.8v, 25C)

90LP
(7-track, typical 1.2v, 25C)

40G
9-track, typical 0.9v, 25C)

Dynamic Power 52 µW/MHz 9.8 µW/MHz (8.17 µA/MHz) 3 µW/MHz

Floorplanned Area 0.13 mm2 0.035 mm2 0.009 mm2

 Cortex-M0+ processor is designed to meet the challenges of low dynamic power constraints while
retaining light footprints

 180 nm ultra low power process –52 µW/MHz

 90 nm low power process – 9.8 µW/MHz

 40 nm G process – 3 µW/MHz

Cortex-M0+ Block Diagram

Breakpoint &
Watchpoint

Units

Optional Debug

Debugger
Interface

Nested
Vectored
Interrupt
Controller

(NVIC)

Bus Matrix

Cortex-M0+
processor

core

Optional
Memory

Protection
Unit (MPU)

Cortex-M0+ Processor

Optional
Micro Trace

Buffer
(MTB)

Optional
Debug

Access Port

Optional
Wakeup
Interrupt
Controller

(WIC)

Interrupts

Optional
single-cycle

I/O port

AHB-Lite interface
to system

Optional Serial-
Wire or JTAG
debug port

Cortex-M0+ Components

Cortex-M0+ Block Diagram
• Processor core

• Contains internal registers, the ALU, data path, and some control logic

• Registers include sixteen 32-bit registers for both general and special usage

• Processor pipeline stages
• All loads and stores always complete in program order

• All Strongly-ordered load/stores are automatically synchronized to the instruction stream

• Device and Normal load/stores may be pipelined

• Up to two instructions can be fetched in one transfer (16-bit instructions)

Time

Fetch Execute

Fetch Execute

Fetch Execute

Fetch Execute

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Cortex-M0+ Block Diagram

• Nested Vectored Interrupt Controller (NVIC)
• Up to 32 external interrupt inputs, each with four levels of priority and a dedicated Non-maskable Interrupt

(NMI) input
• Automatically handles nested interrupts, such as comparing priorities between interrupt requests and the

current priority level

• Wakeup Interrupt Controller (WIC)
• For low-power applications, the microcontroller can enter sleep mode by shutting down most of the

components
• When an interrupt request is detected, the WIC can inform the power management unit to power up the

system

• Memory Protection Unit (optional)
• Used to protect memory content, e.g. make some memory regions read-only or preventing user

applications from accessing privileged application data

16

Cortex-M0+ Block Diagram
• Bus interconnect

• Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals
and memory

• Optional single 32-bit single-cycle I/O port
• Optional single 32-bit slave port that supports the DAP

• Debug subsystem
• Handles debug control, program breakpoints, and data watchpoints
• When a debug event occurs, it can put the processor core in a halted state, where developers can analyse

the status of the processor at that point, such as register values and flags
• Support for unlimited software breakpoints using BKPT instruction
• Non-intrusive access to core peripherals and zero-waitstate system slaves through a compact bus matrix. A

debugger can access these devices, including memory, even when the processor is running

ARM Cortex-M0+ Processor
Registers

For RISC processors, registers are
essential – almost all instructions work

with them.

Cortex-M0+ Registers
• Processor registers

• The internal registers are used to store and process temporary data within the processor core
• All registers are inside the processor core, hence they can be accessed quickly
• Load-store architecture

• To process memory data, they have to be first loaded from memory to registers, processed
inside the processor core using register data only, and then written back to memory if
needed

• Cortex-M0+ registers
• Register bank

• Sixteen 32-bit registers (thirteen are used for general-purpose);
• Special registers

Cortex-M0+ Registers
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13(banked)

R14

R15

PSR

Stack Pointer (SP)

Link Register (LR)

Program Counter (PC)

PRIMASK

CONTROL

Program Status Registers (PSR)

Interrupt mask register

Stack definition

Special registers

Register bank

MSP

PSP

Main Stack Pointer

Process Stack Pointer

APSR EPSR IPSR

Application
PSR

Execution
PSR

Interrupt
PSR

Low
Registers

High
Registers

General purpose
register

Cortex-M0+ Registers
• R0 – R12: general purpose registers

• Low registers (R0 – R7) can be accessed by any instruction
• High registers (R8 – R12) sometimes cannot be accessed e.g. by some Thumb

(16-bit) instructions

• R13: Stack Pointer (SP)
• Records the current address of the stack
• Used for saving the context of a program while switching between tasks
• Cortex-M0+ has two SPs: Main SP, used in applications that require privileged

access e.g. OS kernel, and exception handlers, and Process SP, used in base-
level application code (when not running an exception handler)

• R15: Program Counter (PC)
• Records the address of the current instruction code
• Automatically incremented by 4 at each operation (for 32-bit instruction code),

except branching operations
• A branching operation, such as function calls, will change the PC to a specific

address, meanwhile it saves the current PC to the Link Register (LR)
• On reset processor loads PC with the value of the reset vector, that is at

address 0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at reset
and must be 1.

Data Data

PC

SP

Address

Low

High

PUSH POP

Stack

Code

Heap

Cortex-M0+ Registers
• R14: Link Register (LR)

• The LR is used to store the return address of a subroutine or a function call
• The program counter (PC) will load the value from LR after a function is finished

PC

LR

Main
Program

code

subroutineCurrent PC

Load PC with the
address in LR to return
to the main program

Current LR

Return from a subroutine to the main program

PC

LR

Main
Program

code

subroutine

Current PC

1. Save current
PC to LR

2. Load PC with the
starting address of the
subroutine

Call a subroutine

C
od

e re
gion

C
od

e re
gion

Cortex-M0+ Registers
• Program Status Register (PSR)

• Provides information about program execution and ALU flags
• Application PSR (APSR) – condition code flag bit Negative, Zero, oVerflow, Carry
• Interrupt PSR (IPSR) – holds exception number of currently executing ISR
• Execution PSR (EPSR) – Thumb state

N Z C V

ISR number

Reserved

Reserved

ReservedT

Reserved ISR number

APSR

IPSR

EPSR

PSR

bit0bit8bit16bit24bit31

TN Z C V

Cortex-M0+ Registers
• APSR

• N: negative flag – set to one if the result from ALU is negative
• Z: zero flag – set to one if the result from ALU is zero
• C: carry flag – set to one if an unsigned overflow occurs
• V: overflow flag – set to one if a signed overflow occurs

• IPSR
• ISR number – current executing interrupt service routine number

• EPSR
• T: Thumb state – always one since Cortex-M0+ only supports the Thumb state

Cortex-M0+ Registers
• Interrupt mask registers

• Bit 0: PM Flag
Set to one to prevent activation of all exceptions with configurable priority

• Access using CPS, MSR and MSR instructions
Use to prevent data race conditions with code needing atomicity

• CONTROL: special register
• Bit 1: SPSEL Flag

Selects SP when in thread mode: MSP (0) or PSP (1)
• Bit 0: nPRIV Flag
Defines whether thread mode is privileged (0) or unprivileged (1)
• With OS environment,
Threads use PSP
OS and exception handlers (ISRs) use MSP

Cortex-M0+ Registers

ReservedCONTROL

bit8bit16bit24bit31

Reserved

PRIMASK

PRIMASK

SPSEL

nPRIV

Useful Resources
• Reference 1

• Cortex-M0+ Technical Reference Manual:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0484c/DDI0484C_cortex_m0p_r0p1_trm.pdf

• Reference 2
• Cortex-M0+ Devices Generic User Guide:
http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/DUI0662B_cortex_m0p_r0p1_dgug.pdf

• Reference 3
• Cortex-M0+ Processor Overview:
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php

ARM Cortex-M0+ Processor
Memory Map

Memory is a significant cost on “the bill
of materials“ for embedded systems.
Moreover, acces to peripherals is also

realised via some “memory cells“.

Cortex-M0+ Memory Map

• The Cortex-M0+ processor has 4 GB of memory address space
• Support for bit-band operation (detailed later)

• The 4GB memory space is architecturally defined as a number of regions
• Each region is given for recommended usage
• Easy for software programmer to port between different devices

• Nevertheless, despite of the default memory map, the actual usage of the
memory map can also be flexibly defined by the user, except some fixed memory
addresses, such as internal private peripheral bus

Cortex-M0+ Memory Map

Private peripherals
e.g. NVIC, SCS

Mainly used for external peripherals
e.g. SD card

Mainly used for external memories
e.g. external DDR, FLASH, LCD

Mainly used for on-chip peripherals
e.g. AHB, APB peripherals

Mainly used for data memory
e.g. on-chip SRAM, SDRAM

Mainly used for program code
e.g. on-chip FLASH

System

External device

External RAM

Peripheral

SRAM

Code

0xFFFFFFFF

0xE0000000
Private Peripheral Bus

(PPB)
0xDFFFFFFF

0xA0000000
0x9FFFFFFF

0x60000000
0x5FFFFFFF

0x40000000
0x3FFFFFFF

0x1FFFFFFF
0x20000000

0x00000000
512MB

512MB

512MB

1GB

1GB

512MB
0xE00FFFFF
0xE0100000

Reserved for other purposes

KL25Z128VLK4
0x20002FFF

0x20000000

16 KB SRAMSRAM_U (3/4)

SRAM_L (1/4)
0x1FFFF000

0x0001FFFF

128 KB Flash

0x00000000

Cortex-M0+ Memory Map
• Code Region

• Primarily used to store program code
• Can also be used for data memory (von Neumann!)
• On-chip memory, such as on-chip FLASH

• SRAM Region
• Primarily used to store data, such as heaps and stacks
• Can also be used for program code (von Neumann!)
• On-chip memory; despite its name “SRAM”, the actual device could be SRAM, SDRAM or other types

• Peripheral Region
• Primarily used for peripherals, such as Advanced High-performance Bus (AHB) or Advanced Peripheral Bus

(APB) peripherals
• On-chip peripherals

Registers of almost all
MCU on-chip peripherals

are accessible here!

Cortex-M0+ Memory Map
• External RAM Region

• Primarily used to store large data blocks, or memory caches
• Off-chip memory, slower than on-chip SRAM region

• External Device Region
• Primarily used to map to external devices
• Off-chip devices, such as SD card

• Internal Private Peripheral Bus (PPB)
• Used inside the processor core for internal control
• Within PPB, a special range of memory is defined as System Control Space (SCS)
• The Nested Vectored Interrupt Controller (NVIC) is part of SCS

Memory Configuration Example

AHB bus

External SRAM,
FLASH External LCD SD card

Cortex-M0+ PPB SCS NVIC
Debug Ctrl

On-chip FLASH
(Code Region)

On-chip SRAM
(SRAM Region) Peripheral Region

External memory interface
(External RAM Region)

External device interface
(External Device Region)

Timer UART GPIO

Silicon Chip

System

External device

External RAM

Peripheral

SRAM

Code

Private Peripheral Bus
(PPB)

Memory Map:

How the memory is typically used

NXP Kinetis KL05
Memory Map:

Bit-band Operations

• Bit-band operation allows a single load/store operation to access a single bit in the
memory, for example, to change a single bit of one 32-bit data:

• Normal operation without bit-band (read-modify-write)
• Read the value of 32-bit data
• Modify a single bit of the 32-bit value (keep other bits unchanged)
• Write the value back to the address

• Bit-band operation
• Directly write a single bit (0 or 1) to the “bit-band alias address” of the data

• Bit-band alias address
• Each bit-band alias address is mapped to a real data address
• When writing to the bit-band alias address, only a single bit of the data will be changed

Risky in some
cases!

Bit-band Operation Example
• For example, in order to set bit[3] in word data in address 0x20000000:

• Read-Modify-Write operation
• Read the real data address (0x20000000)
• Modify the desired bit (retain other bits unchanged)
• Write the modified data back

• Bit-band operation
• Directly set the bit by writing ‘1’ to address 0x2200000C, which is the alias address of the fourth bit of the 32-bit data at

0x20000000
• In effect, this single instruction is mapped to 2 bus transfers: read data from 0x20000000 to the buffer, and then

write to 0x20000000 from the buffer with bit [3] set

;Read-Modify-Write Operation

LDR R1, =0x20000000 ;Setup address
LDR R0, [R1] ;Read
ORR.W R0, #0x8 ;Modify bit
STR R0, [R1] ;Write back

;Bit-band Operation

LDR R1, =0x2200000C ;Setup address
MOV R0, #1 ;Load data
STR R0, [R1] ;Write

Bit-band Alias Address
• Each bit of the 32-bit data is one-to-one mapped to the bit-band alias address

• For example, the fourth bit (bit [3]) of the data at 0x20000000 is mapped to the bit-band alias address at
0x2200000C

• Hence, to set bit [3] of the data at 0x20000000, we only need to write ‘1’ to address 0x2200000C
• In Cortex-M0+, there are two pre-defined bit-band alias regions: one for SRAM region, and one for

peripherals region

0x20000000

0x20000004

0x20000008

Real 32-bit data
address

0x22000000

0x22000080

0x22000100

0x2200000C

0x22000018

Bit-band alias
address

Why bit [3] has offset +C
and not +3? Because

this is 32 bit CPU!

Bit-band Alias Address
• SRAM region

• 32MB memory space (0x22000000 – 0x23FFFFFF) is used as the bit-band alias region for 1MB data (0x20000000 – 0x200FFFFF)

• Peripherals region
• 32MB memory space (0x42000000 – 0x43FFFFFF) is used as the bit-band alias region for 1MB data (0x40000000 – 0x400FFFFF)

External RAM

Peripherals

SRAM

Code

0x60000000
0x5FFFFFFF

0x40000000
0x3FFFFFFF

0x1FFFFFFF
0x20000000

0x00000000

512MB

512MB

512MB

1MB Bit-band region

32MB Bit-band alias

31MB non-bit-band region

0x20000000

0x20100000

0x22000000

0x23FFFFFF

0x21FFFFFF

1MB Bit-band region

32MB Bit-band alias

31MB non-bit-band region

0x40000000

0x40100000

0x42000000

0x43FFFFFF

0x41FFFFFF

Benefits of Bit-Band Operations
• Faster bit operations

• Fewer instructions

• Atomic operation, avoid hazards
• For example, if an interrupt is triggered and served during the Read-Modify-Write operations, and the

interrupt service routine modifies the same data, a data conflict will occur

Interrupt
occurs

Read data at 0x00 Modify bit [1]

Read data at 0x00 Modify bit [1] Write data back

Write data back

Interrupt
returns

Bit [1] modified by ISR is overwritten
by the main program

Interrupt Service Routine

Main program

Cortex-M0+ Program Image
• The program image in Cortex-M0+ contains

• Vector table -- includes the starting addresses of exceptions (vectors) and the value of the main stack point
(MSP);

• C start-up routine;
• Program code – application code and data;
• C library code – program codes for C library functions.

0x00000000

Code region

Start-up routine &
Program code &

C library code

Vector table

Program
Image

Initial MSP value
Reset vector
NMI vector

Hard fault vector

Reserved
PendSV
SysTick

External Interrupts

Reserved

SVCall

Cortex-M0+ Program Image
• After Reset, the processor:

1. First reads the initial MSP value;

2. Then reads the reset vector;

3. Branches to the start of the programme execution
address (reset handler);

4. Subsequently executes program instructions

Reset

Fetch initial value for MSP
(Read address 0x00000000)

Fetch reset vector
(Read address 0x00000004)

Fetch 1st instruction
(Read address of reset vector)

Fetch 2nd instruction
(Read subsequent instructions)

Reset

Fetch initial value for MSP
(Read address 0x00000000)

Fetch reset vector
(Read address 0x00000004)

Fetch 1st instruction
(Read address of reset vector)

Fetch 2nd instruction
(Read subsequent instructions)

Cortex-M0+ Endianness
• Endian refers to the order of bytes stored in memory

• Big endian: lowest byte of a word-size data is stored in bit 0 to bit 7
• Big endian: lowest byte of a word-size data is stored in bit 24 to bit 31

• Cortex-M0+ supports both little endian and big endian

• However, Endianness only exists in the hardware level

Byte0Byte1Byte2Byte3

Byte0Byte1Byte2Byte3

Byte0Byte1Byte2Byte3

0x00000000

0x00000004

0x00000008

Address [7:0][15:8][23:16][31:24]

Byte0 Byte1 Byte2 Byte3

Byte0 Byte1 Byte2 Byte3

Byte0 Byte1 Byte2 Byte3

[7:0][15:8][23:16][31:24]

Word 1

Word 2

Word 3

Word 1

Word 2

Word 3

Little endian 32-bit memory Big endian 32-bit memory

Endianness

• In Little Endian forms, since lowest order byte is at offset 0 and is accessed first,
instructions for accessing 1, 2, 4 or longer byte number proceed in exactly the
same way for all formats. Also, because of 1:1 relationship between address
offset and byte number (offset 0 is byte 0), multiple precision math routines are
correspondingly easy to write.

• In Big Endian form, since the higher-ordered byte come first, it is easy to test
whether the number is positive or negative by looking the byte at offset 0. Thus
there is no need to receive the complete packet of bytes to know the sign
information. The numbers are also stored in the order in which they are printed
out, so binary to decimal routines are particularly efficient.

Endiannes doesn’t matter on a single system. It matters only when two systems are trying to
communicate (using network or shared memory). This is why modern MCU cores are Bi-Endian

ARM Cortex-M0+ Processor
Instruction Set

ARM and Thumb® Instruction Set
• Early ARM instruction set

• 32-bit instruction set, called the ARM instructions
• Powerful and good performance
• Larger program memory compared to 8-bit and 16-bit processors
• Larger power consumption

• Thumb-1 instruction set
• 16-bit instruction set, first used in ARM7TDMI processor in 1995
• Provides a subset of the ARM instructions, giving better code density compared to 32-bit RISC

architecture
• Code size is reduced by ~30%, but performance is also reduced by ~20%

ARM and Thumb Instruction Set
• Mix of ARM and Thumb-1 Instruction sets

• Benefit from both 32-bit ARM (high performance) and 16-bit Thumb-1 (high code density)
• A multiplexer is used to switch between two states: ARM state (32-bit) and Thumb state (16-bit), which requires a

switching overhead

• Thumb-2 instruction set
• Consists of both 32-bit Thumb instructions and original 16-bit Thumb-1 instruction sets
• Compared to 32-bit ARM instructions set, code size is reduced by ~26%, while keeping a similar performance
• Capable of handling all processing requirements in one operation state

Incoming
Instructions

Thumb remap
to ARM

ARM
Instruction

decoder

Instructions
Executing

T bit, 0: select ARM,
1: select Thumb

0

1

Cortex-M0+ Instruction Set

• ARMv6-M architecture profile
• Includes all of the 16-bit Thumb instruction from ARMv7-M, excluding CBZ, CBNZ and IT.
• The 32-bit Thumb instructions BL, DMB, DSB, ISB, MRS and MSR.
• Supports 32-bit Thumb-2 instructions
• Possible to handle all processing requirements in one operation state (Thumb state)
• Compared with traditional ARM processors (use state switching), advantages include:

• No state switching overhead – both execution time and instruction space are saved
• No need to separate ARM code and Thumb code source files, which makes the development

and maintenance of software easier
• Easier to get optimised efficiency and performance

Compare and branch if Z/NZ,
If - Then

Cortex-M0+ Instruction Set
• ARM assembly syntax:

label
mnemonic operand1, operand2, … ; Comments

• Label is used as a reference to an address location;
• Mnemonic is the name of the instruction;
• Operand1 is the destination of the operation;
• Operand2 is normally the source of the operation;
• Comments are written after “ ; ”, which does not affect the program;
• For example

MOVS R3, #0x11 ;Set register R3 to 0x11
• Note that the assembly code can be assembled by either ARM assembler (armasm) or assembly tools from a

variety of vendors (e.g. GNU tool chain). When using GNU tool chain, the syntax for labels and comments is
slightly different

Cortex-M0+ Instruction Set
Mnemonic Operands Brief description Flags

ADCS {Rd,} Rn, Rm Add with Carry N,Z,C,V

ADD{S} {Rd,} Rn, <Rm|#imm> Add N,Z,C,V

ADR Rd, label PC-relative Address to Register

ANDS {Rd,} Rn, Rm Bitwise AND N,Z

ASRS {Rd,} Rm, <Rs|#imm> Arithmetic Shift Right N,Z,C

B{cc} Label Branch {conditionally}

BICS {Rd,} Rn, Rm Bit Clear N,Z

BKPT #imm Breakpoint

BL label Branch with Link

BLX Rm Branch indirect with Link

BX Rm Branch indirect

CMN Rn, Rm Compare Negative N,Z,C,V

CMP Rn, <Rm| #imm> Compare N,Z,C,V

CPSID i Change Processor State, Disable Interrupts

Cortex-M0+ Instruction Set
Mnemonic Operands Brief description Flags

CPSIE I Change Processor State, Enable Interrupts

DMB Data Memory Barrier

DSB Data Synchronization Barrier

EORS {Rd,} Rn, Rm Exclusive OR N,Z

ISB Instruction Synchronization Barrier

LDM Rn{!}, reglist Load Multiple registers, increment after

LDR Rt, label Load Register from PC-relative address

LDR Rt, [Rn, <Rm| #imm>] Load Register with word

LDRB Rt, [Rn, <Rm| #imm>] Load Register with Byte

LDRH Rt, [Rn, <Rm| #imm>] Load Register with Halfword

LDRSB Rt, [Rn, <Rm| #imm>] Load Register with Signed Byte

LDRSH Rt, [Rn, <Rm| #imm>] Load Register with Signed Halfword

LSLS {Rd, } Rn, <Rs| #imm> Logical Shift Left N,Z,C

LSRS {Rd, } Rn, <Rs| #imm> Logical Shift Right N,Z,C

Cortex-M0+ Instruction Set
Mnemonic Operands Brief description Flags

MOV{S} Rd, Rm Move N,Z

MRS Rd, spec_reg Move from Special Register to general register

MSR spec_reg, Rm Move from general register to Special Register N,Z,C,V

MULS Rd, Rn, Rm Multiply, 32-bit result N,Z

MVNS Rd, Rm Bitwise NOT N,Z

NOP No Operation

ORRS {Rd,} Rn, Rm Logical OR N,Z

POP reglist Pop registers from stack

PUSH reglist Push registers onto stack

REV Rd, Rm Reverse byte order in a word

REV16 Rd, Rm Reverse byte order in each halfword

REVSH Rd, Rm Reverse byte order in bottom halfword and sign
extend

RORS {Rd, } Rn, Rs Rotate Right N,Z,C

Cortex-M0+ Instruction Set
Mnemonic Operands Brief description Flags

RSBS {Rd,} Rn, #0 Reverse Subtract N,Z,C,V

SBCS {Rd,} Rn, Rm Subtract with Carry N,Z,C,V

SEV Send Event

STM Rn!, reglist Store Multiple registers, increment after

STR Rt, [Rn, <Rm| #imm>] Store Register as word

STRB Rt, [Rn, <Rm| #imm>] Store Register as byte

STRH Rt, [Rn, <Rm| #imm>] Store Register as Halfword

SUB{S} {Rd, } Rn, <Rm| #imm> Subtract N,Z,C,V

SVC #imm Supervisor Call

SXTB Rd, Rm Sign extend byte

SXTH Rd, Rm Sign extend halfword

TST Rn, Rm Test N,Z

UXTB Rd, Rm Zero extend a Byte

UXTH Rd, Rm Zero extend a Halfword

Cortex-M0+ Instruction Set
Mnemonic Operands Brief description Flags

WFE Wait For Event

WFI Wait For Interrupt

Note: full explanation of each instruction can be found in Cortex-M0+ Devices’ Generic User Guide (Ref-3)

Cortex-M0+ Instruction Set

Mnemonic
Extension

Meaning Condition flags Mnemonic
Extension

Meaning Condition flags

EQ Equal Z == 1 HI Unsigned Higher C == 1 and Z == 0

NE Not Equal Z == 0 LS Unsigned lower or same C == 0 or Z == 1

CS Carry Set C == 1 GE Signed greater than or equal N == V

CC Carry Clear C == 0 LT Signed less than N != V

MI Minus, negative N == 1 GT Signed greater than Z == 0 or N != V

PL Plus, positive or zero N == 0 None (AL) Always (unconditional) Any

VS Overflow V == 1

VC No Overflow V == 0

 Condition codes

 Append to branch instruction (B) to make a conditional branch

 Full ARM instructions (not Thumb or Thumb-2) support conditional execution of arbitrary instructions

 Note: Carry bit = not-borrow for compares and subtractions

Code Example

C Language vs. Assembly Language

Language Advantages Disadvantage

C

Easy to learn Limited or no direct access to core registers and
stack

Portable No direct control over instruction sequence
generation

Easy handling of complex data structures No direct control over stack usage

Assembly

Allow direct control to each instruction step and all
memory

Take longer time to learn

Allows direct access to instructions that cannot be
generated with C

Difficult to manage data structure

Less portable

ARM Cortex-M0+ Interrupts

Cortex-M0+ Program Image
Code region

Start-up routine &
Program code &

C library code

Vector table

Program
Image

0x00000000
0x00000004
0x00000008
0x0000000C

0x0000002C

0x00000038

0x00000040
0x0000003C

Initial MSP value

Reset vector

NMI vector

Hard fault vector

Reserved

PendSV

SysTick

External Interrupts

Reserved

SVCall

0x00000010

0x00000030

Address

Peripheral Interrupts (non-core vectors)

